The cardiovascular effects of central hydrogen sulfide are related to K(ATP) channels activation.

نویسندگان

  • W-Q Liu
  • C Chai
  • X-Y Li
  • W-J Yuan
  • W-Z Wang
  • Y Lu
چکیده

Hydrogen sulfide (H(2)S), an endogenous "gasotransmitter", exists in the central nervous system. However, the central cardiovascular effects of endogenous H(2)S are not fully determined. The present study was designed to investigate the central cardiovascular effects and its possible mechanism in anesthetized rats. Intracerebroventricular (icv) injection of NaHS (0.17~17 microg) produced a significant and dose-dependent decrease in blood pressure (BP) and heart rate (HR) (P < 0.05) compared to control. The higher dose of NaHS (17 microg, n = 6) decreased BP and HR quickly of rats and 2 of them died of respiratory paralyse. Icv injection of the cystathionine beta-synthetase (CBS) activator s-adenosyl-L-methionine (SAM, 26 microg) also produced a significant hypotension and bradycardia, which were similar to the results of icv injection of NaHS. Furthermore, the hypotension and bradycardia induced by icv NaHS were effectively attenuated by pretreatment with the K(ATP) channel blocker glibenclamide but not with the CBS inhibitor hydroxylamine. The present study suggests that icv injection of NaHS produces hypotension and bradycardia, which is dependent on the K(ATP) channel activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...

متن کامل

Alpha lipoic acid protects the heart against myocardial post ischemia-reperfusion arrhythmias via KATP channel activation in isolated rat hearts.

The cardiovascular effects of alpha lipoic acid were evaluated in isolated rat hearts exposed to ischemia-reperfusion injury in vitro. Alpha-lipoic acid raised the level of sulfane sulfur playing an important role in the release of hydrogen sulfide. H2S was shown to prevent the post-reperfusion arrhythmias and to protect the cardiomyocytes from death caused by hypoxia. The activation of potassi...

متن کامل

Hydrogen sulfide in the rostral ventrolateral medulla inhibits sympathetic vasomotor tone through ATP-sensitive K+ channels.

Hydrogen sulfide (H(2)S) acts as an endogenous gaseous transmitter in the central nervous system and plays important roles in regulating cardiovascular function. The rostral ventrolateral medulla (RVLM) is a putative critical central region in the control of sympathetic vasomotor tone and plays an important role in the baroreflex by integrating the inputs from a variety of visceral and somatic ...

متن کامل

Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells.

ATP-sensitive K+ (K(ATP)) channels in vascular smooth muscle cells (VSMC) are important targets for endogenous metabolic regulation and exogenous drug therapy. H2S, as a novel gasotransmitter, has been shown to relax rat aortic tissues via opening of K(ATP) channels. However, interaction of H2S, exogenous-applied or endogenous-produced, with K(ATP) channels in resistance artery VSMC has not bee...

متن کامل

نقش کانالهای پتاسیم حساس به ATP (KATP) در آسیب ناشی از ایسکمی و برقراری مجدد جریان خون در کلیه موش صحرایی

The precise mechanism of ischemia reperfusion (IR) injury is not fully understood. Recent studies on Rat myocardium revealed that activation of the K ATP channels inhibits this process. The goal of this study is finding the same effect of K ATP channels on IR injury, in rat kidney. In this study the effects of K ATP agonist (Diazoxide) and K ATP antagonist (Glibenclamide) plus a K ATP i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological research

دوره 60 5  شماره 

صفحات  -

تاریخ انتشار 2011